Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Heat kernel measures on random surfaces (1505.05546v3)

Published 20 May 2015 in math.PR, hep-th, and math.CV

Abstract: The heat kernel on the symmetric space of positive definite Hermitian matrices is used to endow the spaces of Bergman metrics of degree k on a Riemann surface M with a family of probability measures depending on a choice of the background metric. Under a certain matrix-metric correspondence, each positive definite Hermitian matrix corresponds to a Kahler metric on M. The one and two point functions of the random metric are calculated in a variety of limits as k and t tend to infinity. In the limit when the time t goes to infinity the fluctuations of the random metric around the background metric are the same as the fluctuations of random zeros of holomorphic sections. This is due to the fact that the random zeros form the boundary of the space of Bergman metrics.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.