Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
99 tokens/sec
Gemini 2.5 Pro Premium
56 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
99 tokens/sec
GPT OSS 120B via Groq Premium
507 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

On Minimal Change in Evolving Multi-Context Systems (Preliminary Report) (1505.05368v1)

Published 20 May 2015 in cs.AI

Abstract: Managed Multi-Context Systems (mMCSs) provide a general framework for integrating knowledge represented in heterogeneous KR formalisms. However, mMCSs are essentially static as they were not designed to run in a dynamic scenario. Some recent approaches, among them evolving Multi-Context Systems (eMCSs), extend mMCSs by allowing not only the ability to integrate knowledge represented in heterogeneous KR formalisms, but at the same time to both react to, and reason in the presence of commonly temporary dynamic observations, and evolve by incorporating new knowledge. The notion of minimal change is a central notion in dynamic scenarios, specially in those that admit several possible alternative evolutions. Since eMCSs combine heterogeneous KR formalisms, each of which may require different notions of minimal change, the study of minimal change in eMCSs is an interesting and highly non-trivial problem. In this paper, we study the notion of minimal change in eMCSs, and discuss some alternative minimal change criteria.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube