Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 42 tok/s
GPT-5 High 43 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 462 tok/s Pro
Kimi K2 202 tok/s Pro
2000 character limit reached

Sparse and Robust Linear Regression: An Optimization Algorithm and Its Statistical Properties (1505.05257v1)

Published 20 May 2015 in math.ST, stat.ME, and stat.TH

Abstract: This paper studies sparse linear regression analysis with outliers in the responses. A parameter vector for modeling outliers is added to the standard linear regression model and then the sparse estimation problem for both coefficients and outliers is considered. The $\ell_{1}$ penalty is imposed for the coefficients, while various penalties including redescending type penalties are for the outliers. To solve the sparse estimation problem, we introduce an optimization algorithm. Under some conditions, we show the algorithmic and statistical convergence property for the coefficients obtained by the algorithm. Moreover, it is shown that the algorithm can recover the true support of the coefficients with probability going to one.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.