Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local to global algorithms for the Gorenstein adjoint ideal of a curve (1505.05040v1)

Published 19 May 2015 in math.AG and math.AC

Abstract: We present new algorithms for computing adjoint ideals of curves and thus, in the planar case, adjoint curves. With regard to terminology, we follow Gorenstein who states the adjoint condition in terms of conductors. Our main algorithm yields the Gorenstein adjoint ideal G of a given curve as the intersection of what we call local Gorenstein adjoint ideals. Since the respective local computations do not depend on each other, our approach is inherently parallel. Over the rationals, further parallelization is achieved by a modular version of the algorithm which first computes a number of the characteristic p counterparts of G and then lifts these to characteristic zero. As a key ingredient, we establish an efficient criterion to verify the correctness of the lift. Well-known applications are the computation of Riemann-Roch spaces, the construction of points in moduli spaces, and the parametrization of rational curves. We have implemented different variants of our algorithms together with Mnuk's approach in the computer algebra system Singular and give timings to compare the performance of the algorithms.

Summary

We haven't generated a summary for this paper yet.