Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
114 tokens/sec
Gemini 2.5 Pro Premium
26 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
10 tokens/sec
DeepSeek R1 via Azure Premium
55 tokens/sec
2000 character limit reached

Energy Conservation Equations of Motion (1505.04786v1)

Published 18 May 2015 in physics.class-ph

Abstract: A conventional derivation of motion equations in mechanics and field equations in field theory is based on the principle of least action with a proper Lagrangian. With a time-independent Lagrangian, a function of coordinates and velocities that is called energy is constant. This paper presents an alternative approach, namely derivation of a general form of equations of motion that keep the system energy, expressed as a function of generalized coordinates and corresponding velocities, constant. These are Lagrange equations with addition of gyroscopic forces. The important fact, that the energy is defined as the function on the tangent bundle of configuration manifold, is used explicitly for the derivation. The Lagrangian is derived from a known energy function. A development of generalized Hamilton and Lagrange equations without the use of variational principles is proposed. The use of new technique is applied to derivation of some equations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube