Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Margins, Kernels and Non-linear Smoothed Perceptrons (1505.04123v1)

Published 15 May 2015 in cs.LG, cs.AI, cs.NA, and math.OC

Abstract: We focus on the problem of finding a non-linear classification function that lies in a Reproducing Kernel Hilbert Space (RKHS) both from the primal point of view (finding a perfect separator when one exists) and the dual point of view (giving a certificate of non-existence), with special focus on generalizations of two classical schemes - the Perceptron (primal) and Von-Neumann (dual) algorithms. We cast our problem as one of maximizing the regularized normalized hard-margin ($\rho$) in an RKHS and %use the Representer Theorem to rephrase it in terms of a Mahalanobis dot-product/semi-norm associated with the kernel's (normalized and signed) Gram matrix. We derive an accelerated smoothed algorithm with a convergence rate of $\tfrac{\sqrt {\log n}}{\rho}$ given $n$ separable points, which is strikingly similar to the classical kernelized Perceptron algorithm whose rate is $\tfrac1{\rho2}$. When no such classifier exists, we prove a version of Gordan's separation theorem for RKHSs, and give a reinterpretation of negative margins. This allows us to give guarantees for a primal-dual algorithm that halts in $\min{\tfrac{\sqrt n}{|\rho|}, \tfrac{\sqrt n}{\epsilon}}$ iterations with a perfect separator in the RKHS if the primal is feasible or a dual $\epsilon$-certificate of near-infeasibility.

Citations (13)

Summary

We haven't generated a summary for this paper yet.