Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Beating the random assignment on constraint satisfaction problems of bounded degree (1505.03424v2)

Published 13 May 2015 in cs.CC and cs.DS

Abstract: We show that for any odd $k$ and any instance of the Max-kXOR constraint satisfaction problem, there is an efficient algorithm that finds an assignment satisfying at least a $\frac{1}{2} + \Omega(1/\sqrt{D})$ fraction of constraints, where $D$ is a bound on the number of constraints that each variable occurs in. This improves both qualitatively and quantitatively on the recent work of Farhi, Goldstone, and Gutmann (2014), which gave a \emph{quantum} algorithm to find an assignment satisfying a $\frac{1}{2} + \Omega(D{-3/4})$ fraction of the equations. For arbitrary constraint satisfaction problems, we give a similar result for "triangle-free" instances; i.e., an efficient algorithm that finds an assignment satisfying at least a $\mu + \Omega(1/\sqrt{D})$ fraction of constraints, where $\mu$ is the fraction that would be satisfied by a uniformly random assignment.

Citations (57)

Summary

We haven't generated a summary for this paper yet.