Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hybrid data clustering approach using K-Means and Flower Pollination Algorithm (1505.03236v1)

Published 13 May 2015 in cs.LG, cs.IR, and cs.NE

Abstract: Data clustering is a technique for clustering set of objects into known number of groups. Several approaches are widely applied to data clustering so that objects within the clusters are similar and objects in different clusters are far away from each other. K-Means, is one of the familiar center based clustering algorithms since implementation is very easy and fast convergence. However, K-Means algorithm suffers from initialization, hence trapped in local optima. Flower Pollination Algorithm (FPA) is the global optimization technique, which avoids trapping in local optimum solution. In this paper, a novel hybrid data clustering approach using Flower Pollination Algorithm and K-Means (FPAKM) is proposed. The proposed algorithm results are compared with K-Means and FPA on eight datasets. From the experimental results, FPAKM is better than FPA and K-Means.

Citations (36)

Summary

We haven't generated a summary for this paper yet.