The Apollonian structure of Bianchi groups (1505.03121v2)
Abstract: We study the orbit of $\widehat{\mathbb{R}}$ under the M\"obius action of the Bianchi group $\operatorname{PSL}_2(\mathcal{O}_K)$ on $\widehat{\mathbb{C}}$, where $\mathcal{O}_K$ is the ring of integers of an imaginary quadratic field $K$. The orbit $\mathcal{S}_K$, called a Schmidt arrangement, is a geometric realisation, as an intricate circle packing, of the arithmetic of $K$. We give a simple geometric characterisation of certain subsets of $\mathcal{S}_K$ generalizing Apollonian circle packings, and show that $\mathcal{S}_K$, considered with orientations, is a disjoint union of all primitive integral such $K$-Apollonian packings. These packings are described by a new class of thin groups of arithmetic interest called $K$-Apollonian groups. We make a conjecture on the curvatures of these packings, generalizing the local-to-global conjecture for Apollonian circle packings.