Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantum Eigenvalue Estimation for Irreducible Non-negative Matrices (1505.02984v5)

Published 12 May 2015 in quant-ph and cs.DS

Abstract: Quantum phase estimation algorithm has been successfully adapted as a sub frame of many other algorithms applied to a wide variety of applications in different fields. However, the requirement of a good approximate eigenvector given as an input to the algorithm hinders the application of the algorithm to the problems where we do not have any prior knowledge about the eigenvector. In this paper, we show that the principal eigenvalue of an irreducible non-negative operator can be determined by using an equal superposition initial state in the phase estimation algorithm. This removes the necessity of the existence of an initial good approximate eigenvector. Moreover, we show that the success probability of the algorithm is related to the closeness of the operator to a stochastic matrix. Therefore, we draw an estimate for the success probability by using the variance of the column sums of the operator. This provides a priori information which can be used to know the success probability of the algorithm beforehand for the non-negative matrices and apply the algorithm only in cases when the estimated probability reasonably high. Finally, we discuss the possible applications and show the results for random symmetric matrices and 3-local Hamiltonians with non-negative off-diagonal elements.

Summary

We haven't generated a summary for this paper yet.