Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Refinement Type Inference via Horn Constraint Optimization (1505.02878v2)

Published 12 May 2015 in cs.PL

Abstract: We propose a novel method for inferring refinement types of higher-order functional programs. The main advantage of the proposed method is that it can infer maximally preferred (i.e., Pareto optimal) refinement types with respect to a user-specified preference order. The flexible optimization of refinement types enabled by the proposed method paves the way for interesting applications, such as inferring most-general characterization of inputs for which a given program satisfies (or violates) a given safety (or termination) property. Our method reduces such a type optimization problem to a Horn constraint optimization problem by using a new refinement type system that can flexibly reason about non-determinism in programs. Our method then solves the constraint optimization problem by repeatedly improving a current solution until convergence via template-based invariant generation. We have implemented a prototype inference system based on our method, and obtained promising results in preliminary experiments.

Citations (19)

Summary

We haven't generated a summary for this paper yet.