Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundary blow-up solutions to fractional elliptic equations in a measure framework (1505.02490v1)

Published 11 May 2015 in math.AP

Abstract: Let $\alpha\in(0,1)$, $\Omega$ be a bounded open domain in $RN$ ($N\ge 2$) with $C2$ boundary $\partial\Omega$ and $\omega$ be the Hausdorff measure on $\partial\Omega$. We denote by $\frac{\partial\alpha \omega}{\partial \vec{n}\alpha}$ a measure $$\langle\frac{\partial\alpha \omega}{\partial \vec{n}\alpha},f\rangle=\int_{\partial\Omega}\frac{\partial\alpha f(x)}{\partial \vec{n}x\alpha} d\omega(x),\quad f\in C1(\bar\Omega),$$ where $\vec{n}_x$ is the unit outward normal vector at point $x\in\partial\Omega$. In this paper, we prove that problem $$ \begin{array}{lll} (-\Delta)\alpha u+g(u)=k\frac{\partial\alpha \omega}{\partial \vec{n}\alpha}\quad & {\rm in}\quad \bar\Omega,\[2mm] \phantom{(-\Delta)\alpha +g(u)} u=0\quad & {\rm in}\quad \Omegac \end{array} $$ admits a unique weak solution $u_k$ under the hypotheses that $k>0$, $(-\Delta)\alpha$ denotes the fractional Laplacian with $\alpha\in(0,1)$ and $g$ is a nondecreasing function satisfying extra conditions. We prove that the weak solution is a classical solution of $$ \begin{array}{lll} \ \ \ (-\Delta)\alpha u+g(u)=0\quad & {\rm in}\quad \Omega,\[2mm] \phantom{------} \ u=0\quad & {\rm in}\quad RN\setminus\bar\Omega,\[2mm] \phantom{} \lim{x\in\Omega,x\to\partial\Omega}u(x)=+\infty. \end{array} $$

Summary

We haven't generated a summary for this paper yet.