Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stochastic growth rates for life histories with rare migration or diapause (1505.00116v1)

Published 1 May 2015 in q-bio.PE and math.PR

Abstract: The growth of a population divided among spatial sites, with migration between the sites, is sometimes modelled by a product of random matrices, with each diagonal elements representing the growth rate in a given time period, and off-diagonal elements the migration rate. If the sites are reinterpreted as age classes, the same model may apply to a single population with age-dependent mortality and reproduction. We consider the case where the off-diagonal elements are small, representing a situation where there is little migration or, alternatively, where a deterministic life-history has been slightly disrupted, for example by introducing a rare delay in development. We examine the asymptotic behaviour of the long-term growth rate. We show that when the highest growth rate is attained at two different sites in the absence of migration (which is always the case when modelling a single age-structured population) the increase in stochastic growth rate due to a migration rate $\epsilon$ is like $(\log \epsilon{-1}){-1}$ as $\epsilon\downarrow 0$, under fairly generic conditions. When there is a single site with the highest growth rate the behavior is more delicate, depending on the tails of the growth rates. For the case when the log growth rates have Gaussian-like tails we show that the behavior near zero is like a power of $\epsilon$, and derive upper and lower bounds for the power in terms of the difference in the growth rates and the distance between the sites.

Summary

We haven't generated a summary for this paper yet.