Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Global Convergence of Majorization Minimization Algorithms for Nonconvex Optimization Problems (1504.07791v2)

Published 29 Apr 2015 in cs.NA and math.OC

Abstract: In this paper, we study the global convergence of majorization minimization (MM) algorithms for solving nonconvex regularized optimization problems. MM algorithms have received great attention in machine learning. However, when applied to nonconvex optimization problems, the convergence of MM algorithms is a challenging issue. We introduce theory of the Kurdyka- Lojasiewicz inequality to address this issue. In particular, we show that many nonconvex problems enjoy the Kurdyka- Lojasiewicz property and establish the global convergence result of the corresponding MM procedure. We also extend our result to a well known method that called CCCP (concave-convex procedure).

Citations (8)

Summary

We haven't generated a summary for this paper yet.