Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
37 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
37 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
10 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Asymptotic Normality of Degree Counts in a Preferential Attachment Model (1504.07328v1)

Published 28 Apr 2015 in math.PR

Abstract: Preferential attachment is a widely adopted paradigm for understanding the dynamics of social networks. Formal statistical inference,for instance GLM techniques, and model verification methods will require knowing test statistics are asymptotically normal even though node or count based network data is nothing like classical data from independently replicated experiments. We therefore study asymptotic normality of degree counts for a sequence of growing simple undirected preferential attachment graphs. The methods of proof rely on identifying martingales and then exploiting the martingale central limit theorems.

Summary

We haven't generated a summary for this paper yet.