Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On polynomial convexity of compact subsets of totally-real submanifold in $\mathbb{C}^n$ (1504.07049v1)

Published 27 Apr 2015 in math.CV

Abstract: Let $K$ be a compact subset of a totally-real manifold $M$, where $M$ is either a $\mathcal{C}2$-smooth graph in $\mathbb{C}{2n}$ over $\mathbb{C}n$, or $M=u{-1}{0}$ for a $\mathcal{C}2$-smooth submersion $u$ from $\mathbb{C}n$ to $\mathbb{R}{2n-k}$, $k\leq n$. In this case we show that $K$ is polynomially convex if and only if for a fixed neighbourhood $U$, defined in terms of the defining functions of $M$, there exists a plurisubharmonic function $\Psi$ on $\mathbb{C}n$ such that $K\subset {\Psi<0}\subset U$.

Summary

We haven't generated a summary for this paper yet.