2000 character limit reached
Topological Hopf algebras and their Hopf-cyclic cohomology (1504.06834v5)
Published 26 Apr 2015 in math.KT
Abstract: A natural extension of the Hopf-cyclic cohomology, with coefficients, is introduced to encompass topological Hopf algebras. The topological theory allows to work with infinite dimensional Lie algebras. Furthermore, the category of coefficients (AYD modules) over a topological Lie algebra and those over its universal enveloping (Hopf) algebra are isomorphic. For topological Hopf algebras, the category of coefficients is identified with the representation category of a topological algebra called the anti-Drinfeld double. Finally, a topological van Est type isomorphism is detailed, connecting the Hopf-cyclic cohomology to the relative Lie algebra cohomology with respect to a maximal compact subalgebra.