Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Minimax Converse for Quantum Channel Coding (1504.05376v2)

Published 21 Apr 2015 in quant-ph, cs.IT, and math.IT

Abstract: We prove a one-shot "minimax" converse bound for quantum channel coding assisted by positive partial transpose channels between sender and receiver. The bound is similar in spirit to the converse by Polyanskiy, Poor, and Verdu [IEEE Trans. Info. Theory 56, 2307-2359 (2010)] for classical channel coding, and also enjoys the saddle point property enabling the order of optimizations to be interchanged. Equivalently, the bound can be formulated as a semidefinite program satisfying strong duality. The convex nature of the bound implies channel symmetries can substantially simplify the optimization, enabling us to explicitly compute the finite blocklength behavior for several simple qubit channels. In particular, we find that finite blocklength converse statements for the classical erasure channel apply to the assisted quantum erasure channel, while bounds for the classical binary symmetric channel apply to both the assisted dephasing and depolarizing channels. This implies that these qubit channels inherit statements regarding the asymptotic limit of large blocklength, such as the strong converse or second-order converse rates, from their classical counterparts. Moreover, for the dephasing channel, the finite blocklength bounds are as tight as those for the classical binary symmetric channel, since coding for classical phase errors yields equivalently-performing unassisted quantum codes.

Summary

We haven't generated a summary for this paper yet.