Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Wireless Compressive Sensing Over Fading Channels with Distributed Sparse Random Projections (1504.03974v1)

Published 15 Apr 2015 in cs.IT, math.IT, and stat.AP

Abstract: We address the problem of recovering a sparse signal observed by a resource constrained wireless sensor network under channel fading. Sparse random matrices are exploited to reduce the communication cost in forwarding information to a fusion center. The presence of channel fading leads to inhomogeneity and non Gaussian statistics in the effective measurement matrix that relates the measurements collected at the fusion center and the sparse signal being observed. We analyze the impact of channel fading on nonuniform recovery of a given sparse signal by leveraging the properties of heavy-tailed random matrices. We quantify the additional number of measurements required to ensure reliable signal recovery in the presence of nonidentical fading channels compared to that is required with identical Gaussian channels. Our analysis provides insights into how to control the probability of sensor transmissions at each node based on the channel fading statistics in order to minimize the number of measurements collected at the fusion center for reliable sparse signal recovery. We further discuss recovery guarantees of a given sparse signal with any random projection matrix where the elements are sub-exponential with a given sub-exponential norm. Numerical results are provided to corroborate the theoretical findings.

Citations (27)

Summary

We haven't generated a summary for this paper yet.