Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 TPS
Gemini 2.5 Pro 50 TPS Pro
GPT-5 Medium 32 TPS
GPT-5 High 30 TPS Pro
GPT-4o 67 TPS
GPT OSS 120B 452 TPS Pro
Kimi K2 190 TPS Pro
2000 character limit reached

On a uniqueness property of cuspidal unipotent representations (1504.03458v14)

Published 14 Apr 2015 in math.RT

Abstract: The formal degree of a unipotent discrete series character of a simple linear algebraic group over a non-archimedean local field (in the sense of Lusztig), is a rational function of the cardinality q of the residue field. The irreducible factors of this rational function are $q$ and cyclotomic polynomials. We prove that the formal degree of a supercuspidal unipotent representation determines its Lusztig-Langlands parameter, up to twisting by weakly unramified characters. For split exceptional groups this result follows from the work of Mark Reeder, and for the remaining exceptional cases this is verified by the first name author in arXiv:1708.09547. In the present paper we treat the classical families. The main result of this article characterizes unramified Lusztig-Langlands parameters which support a cuspidal local system in terms of formal degrees. The result implies the uniqueness of so-called cuspidal spectral transfer morphisms (as introduced in arXiv:1310.7193) between unipotent affine Hecke algebras (up to twisting by unramified characters). In arXiv:1310.7790 the essential uniqueness of arbitrary unipotent spectral transfer morphisms was reduced to the cuspidal case.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)