Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automated Analysis and Prediction of Job Interview Performance (1504.03425v1)

Published 14 Apr 2015 in cs.HC, cs.AI, and cs.CL

Abstract: We present a computational framework for automatically quantifying verbal and nonverbal behaviors in the context of job interviews. The proposed framework is trained by analyzing the videos of 138 interview sessions with 69 internship-seeking undergraduates at the Massachusetts Institute of Technology (MIT). Our automated analysis includes facial expressions (e.g., smiles, head gestures, facial tracking points), language (e.g., word counts, topic modeling), and prosodic information (e.g., pitch, intonation, and pauses) of the interviewees. The ground truth labels are derived by taking a weighted average over the ratings of 9 independent judges. Our framework can automatically predict the ratings for interview traits such as excitement, friendliness, and engagement with correlation coefficients of 0.75 or higher, and can quantify the relative importance of prosody, language, and facial expressions. By analyzing the relative feature weights learned by the regression models, our framework recommends to speak more fluently, use less filler words, speak as "we" (vs. "I"), use more unique words, and smile more. We also find that the students who were rated highly while answering the first interview question were also rated highly overall (i.e., first impression matters). Finally, our MIT Interview dataset will be made available to other researchers to further validate and expand our findings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Iftekhar Naim (11 papers)
  2. M. Iftekhar Tanveer (3 papers)
  3. Daniel Gildea (28 papers)
  4. Mohammed (3 papers)
  5. Hoque (3 papers)
Citations (110)

Summary

We haven't generated a summary for this paper yet.