Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

HHCART: An Oblique Decision Tree (1504.03415v1)

Published 14 Apr 2015 in stat.ML and cs.LG

Abstract: Decision trees are a popular technique in statistical data classification. They recursively partition the feature space into disjoint sub-regions until each sub-region becomes homogeneous with respect to a particular class. The basic Classification and Regression Tree (CART) algorithm partitions the feature space using axis parallel splits. When the true decision boundaries are not aligned with the feature axes, this approach can produce a complicated boundary structure. Oblique decision trees use oblique decision boundaries to potentially simplify the boundary structure. The major limitation of this approach is that the tree induction algorithm is computationally expensive. In this article we present a new decision tree algorithm, called HHCART. The method utilizes a series of Householder matrices to reflect the training data at each node during the tree construction. Each reflection is based on the directions of the eigenvectors from each classes' covariance matrix. Considering axis parallel splits in the reflected training data provides an efficient way of finding oblique splits in the unreflected training data. Experimental results show that the accuracy and size of the HHCART trees are comparable with some benchmark methods in the literature. The appealing feature of HHCART is that it can handle both qualitative and quantitative features in the same oblique split.

Citations (74)

Summary

We haven't generated a summary for this paper yet.