Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High Density Noise Removal by Cascading Algorithms (1504.02856v1)

Published 11 Apr 2015 in cs.CV

Abstract: An advanced non-linear cascading filter algorithm for the removal of high density salt and pepper noise from the digital images is proposed. The proposed method consists of two stages. The first stage Decision base Median Filter (DMF) acts as the preliminary noise removal algorithm. The second stage is either Modified Decision Base Partial Trimmed Global Mean Filter (MDBPTGMF) or Modified Decision Based Unsymmetric Trimmed Median Filter (MDBUTMF) which is used to remove the remaining noise and enhance the image quality. The DMF algorithm performs well at low noise density but it fails to remove the noise at medium and high level. The MDBPTGMF and MDUTMF have excellent performance at low, medium and high noise density but these reduce the image quality and blur the image at high noise level. So the basic idea behind this paper is to combine the advantages of the filters used in both the stages to remove the Salt and Pepper noise and enhance the image quality at all the noise density level. The proposed method is tested against different gray scale images and it gives better Mean Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR) and Image Enhancement Factor (IEF) than the Adaptive Median Filter (AMF), Decision Base Unsymmetric Trimmed Median Filter (DBUTMF), Modified Decision Base Unsymmetric Trimmed Median Filter (MDBUTMF) and Decision Base Partial Trimmed Global Mean Filter (DBPTGMF).

Citations (27)

Summary

We haven't generated a summary for this paper yet.