Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On The Homotopy Type of Higher Orbifolds and Haefliger Classifying Spaces (1504.02394v1)

Published 9 Apr 2015 in math.AT, math.CT, and math.DG

Abstract: We describe various equivalent ways of associating to an orbifold, or more generally a higher \'etale differentiable stack, a weak homotopy type. Some of these ways extend to arbitrary higher stacks on the site of smooth manifolds, and we show that for a differentiable stack X arising from a Lie groupoid G, the weak homotopy type of X agrees with that of BG. Using this machinery, we are able to find new presentations for the weak homotopy type of certain classifying spaces. In particular, we give a new presentation for the Borel construction of an almost free action of a Lie group G on a smooth manifold M as the classifying space of a category whose objects consists of smooth maps Rn to M which are transverse to all the G-orbits, where n=dim M - dim G. We also prove a generalization of Segal's theorem, which presents the weak homotopy type of Haefliger's groupoid $\Gammaq$ as the classifying space of the monoid of self-embeddings of Rq, and our generalization gives analogous presentations for the weak homotopy type of the Lie groupoids $\Gamma{Sp}_{2q}$ and $R\Gammaq$ which are related to the classification of foliations with transverse symplectic forms and transverse metrics respectively. We also give a short and simple proof of Segal's original theorem using our machinery.

Summary

We haven't generated a summary for this paper yet.