Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Realizations of self branched coverings of the 2-sphere (1504.01154v1)

Published 5 Apr 2015 in math.DS and math.CO

Abstract: For a degree d self branched covering of the 2-sphere, a notable combinatorial invariant is an integer partition of 2d -- 2, consisting of the multiplicities of the critical points. A finer invariant is the so called Hurwitz passport. The realization problem of Hurwitz passports remain largely open till today. In this article, we introduce two different types of finer invariants: a bipartite map and an incident matrix. We then settle completely their realization problem by showing that a map, or a matrix, is realized by a branched covering if and only if it satisfies a certain balanced condition. A variant of the bipartite map approach was initiated by W. Thurston. Our results shed some new lights to the Hurwitz passport problem.

Summary

We haven't generated a summary for this paper yet.