Hardy and Hardy-Sobolev inequalities on Riemannian manifolds (1504.00968v2)
Abstract: Let $ (M,g) $ be a smooth compact Riemannian manifold of dimension $ N \geq 3 $. Given $p_0 \in M$, $\lambda \in \mathcal{R}$ and $\sigma \in (0,2]$, we study existence and non existence of minimizers of the following quotient: \begin{equation}\label{Paper Equation} \mu_{\lambda,\sigma}=\inf_{u \in H1(M)\setminus \lbrace0\rbrace} \frac{\displaystyle\int_M |\nabla u|2 dv_g -\lambda \int_M u2 dv_g }{\biggl(\displaystyle\int_M \rho{-\sigma} |u|{2*(\sigma)} dv_g\biggl){2/2*(\sigma)}}, \end{equation} where $\rho(.):=dist(p_0,.)$ denoted the geodesic distance from $p \in M$ to $p_0$. In particular for $\sigma=2$, we provide sufficient and necessary conditions of existence of minimizers in terms of $\lambda$. For $\sigma\in (0,2)$ we prove existence of minimizers under scalar curvature pinching.