Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hardy and Hardy-Sobolev inequalities on Riemannian manifolds (1504.00968v2)

Published 4 Apr 2015 in math.AP

Abstract: Let $ (M,g) $ be a smooth compact Riemannian manifold of dimension $ N \geq 3 $. Given $p_0 \in M$, $\lambda \in \mathcal{R}$ and $\sigma \in (0,2]$, we study existence and non existence of minimizers of the following quotient: \begin{equation}\label{Paper Equation} \mu_{\lambda,\sigma}=\inf_{u \in H1(M)\setminus \lbrace0\rbrace} \frac{\displaystyle\int_M |\nabla u|2 dv_g -\lambda \int_M u2 dv_g }{\biggl(\displaystyle\int_M \rho{-\sigma} |u|{2*(\sigma)} dv_g\biggl){2/2*(\sigma)}}, \end{equation} where $\rho(.):=dist(p_0,.)$ denoted the geodesic distance from $p \in M$ to $p_0$. In particular for $\sigma=2$, we provide sufficient and necessary conditions of existence of minimizers in terms of $\lambda$. For $\sigma\in (0,2)$ we prove existence of minimizers under scalar curvature pinching.

Summary

We haven't generated a summary for this paper yet.