Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic analysis of a boundary-value problem in a thin cascade domain with a local joint (1503.09117v1)

Published 31 Mar 2015 in math.AP

Abstract: A nonuniform Neumann boundary-value problem is considered for the Poisson equation in a thin domain $\Omega_\varepsilon$ coinciding with two thin rectangles connected through a joint of diameter ${\cal O}(\varepsilon)$. A rigorous procedure is developed to construct the complete asymptotic expansion for the solution as the small parameter $\varepsilon \to 0.$ Energetic and uniform pointwise estimates for the difference between the solution of the starting problem $(\varepsilon >0)$ and the solution of the corresponding limit problem $(\varepsilon =0)$ are proved, from which the influence of the geometric irregularity of the joint is observed.

Summary

We haven't generated a summary for this paper yet.