Papers
Topics
Authors
Recent
Search
2000 character limit reached

Laplace Approximation in High-dimensional Bayesian Regression

Published 28 Mar 2015 in math.ST and stat.TH | (1503.08337v1)

Abstract: We consider Bayesian variable selection in sparse high-dimensional regression, where the number of covariates $p$ may be large relative to the samples size $n$, but at most a moderate number $q$ of covariates are active. Specifically, we treat generalized linear models. For a single fixed sparse model with well-behaved prior distribution, classical theory proves that the Laplace approximation to the marginal likelihood of the model is accurate for sufficiently large sample size $n$. We extend this theory by giving results on uniform accuracy of the Laplace approximation across all models in a high-dimensional scenario in which $p$ and $q$, and thus also the number of considered models, may increase with $n$. Moreover, we show how this connection between marginal likelihood and Laplace approximation can be used to obtain consistency results for Bayesian approaches to variable selection in high-dimensional regression.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.