Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Variance Reduced Stochastic Newton Method (1503.08316v4)

Published 28 Mar 2015 in cs.LG

Abstract: Quasi-Newton methods are widely used in practise for convex loss minimization problems. These methods exhibit good empirical performance on a wide variety of tasks and enjoy super-linear convergence to the optimal solution. For large-scale learning problems, stochastic Quasi-Newton methods have been recently proposed. However, these typically only achieve sub-linear convergence rates and have not been shown to consistently perform well in practice since noisy Hessian approximations can exacerbate the effect of high-variance stochastic gradient estimates. In this work we propose Vite, a novel stochastic Quasi-Newton algorithm that uses an existing first-order technique to reduce this variance. Without exploiting the specific form of the approximate Hessian, we show that Vite reaches the optimum at a geometric rate with a constant step-size when dealing with smooth strongly convex functions. Empirically, we demonstrate improvements over existing stochastic Quasi-Newton and variance reduced stochastic gradient methods.

Citations (47)

Summary

We haven't generated a summary for this paper yet.