Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Machine Learning Approach to Predicting the Smoothed Complexity of Sorting Algorithms (1503.06572v1)

Published 23 Mar 2015 in cs.LG, cs.AI, and cs.CC

Abstract: Smoothed analysis is a framework for analyzing the complexity of an algorithm, acting as a bridge between average and worst-case behaviour. For example, Quicksort and the Simplex algorithm are widely used in practical applications, despite their heavy worst-case complexity. Smoothed complexity aims to better characterize such algorithms. Existing theoretical bounds for the smoothed complexity of sorting algorithms are still quite weak. Furthermore, empirically computing the smoothed complexity via its original definition is computationally infeasible, even for modest input sizes. In this paper, we focus on accurately predicting the smoothed complexity of sorting algorithms, using machine learning techniques. We propose two regression models that take into account various properties of sorting algorithms and some of the known theoretical results in smoothed analysis to improve prediction quality. We show experimental results for predicting the smoothed complexity of Quicksort, Mergesort, and optimized Bubblesort for large input sizes, therefore filling the gap between known theoretical and empirical results.

Summary

We haven't generated a summary for this paper yet.