Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comparative Analysis of Tensor Decomposition Models Using Hyper Spectral Image (1503.06561v1)

Published 23 Mar 2015 in cs.NA and cs.CV

Abstract: Hyper spectral imaging is a remote sensing technology, providing variety of applications such as material identification, space object identification, planetary exploitation etc. It deals with capturing continuum of images of the earth surface from different angles. Due to the multidimensional nature of the image, multi-way arrays are one of the possible solutions for analyzing hyper spectral data. This multi-way array is called tensor. Our approach deals with implementing three decomposition models LMLRA, BTD and CPD to the sample data for choosing the best decomposition of the data set. The results have proved that Block Term Decomposition (BTD) is the best tensor model for decomposing the hyper spectral image in to resultant factor matrices.

Citations (4)

Summary

We haven't generated a summary for this paper yet.