2000 character limit reached
Time-varying nonlinear regression models: Nonparametric estimation and model selection (1503.05289v1)
Published 18 Mar 2015 in math.ST and stat.TH
Abstract: This paper considers a general class of nonparametric time series regression models where the regression function can be time-dependent. We establish an asymptotic theory for estimates of the time-varying regression functions. For this general class of models, an important issue in practice is to address the necessity of modeling the regression function as nonlinear and time-varying. To tackle this, we propose an information criterion and prove its selection consistency property. The results are applied to the U.S. Treasury interest rate data.