Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
27 tokens/sec
GPT-5 High Premium
19 tokens/sec
GPT-4o
103 tokens/sec
DeepSeek R1 via Azure Premium
82 tokens/sec
GPT OSS 120B via Groq Premium
458 tokens/sec
Kimi K2 via Groq Premium
209 tokens/sec
2000 character limit reached

Approximate Bayesian inference in semiparametric copula models (1503.02912v4)

Published 10 Mar 2015 in stat.ME and stat.CO

Abstract: We describe a simple method for making inference on a functional of a multivariate distribution. The method is based on a copula representation of the multivariate distribution and it is based on the properties of an Approximate Bayesian Monte Carlo algorithm, where the proposed values of the functional of interest are weighed in terms of their empirical likelihood. This method is particularly useful when the "true" likelihood function associated with the working model is too costly to evaluate or when the working model is only partially specified.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube