Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The positive equivariant symplectic homology as an invariant for some contact manifolds (1503.01443v2)

Published 4 Mar 2015 in math.SG

Abstract: We show that positive $S1$-equivariant symplectic homology is a contact invariant for a subclass of contact manifolds which are boundaries of Liouville domains. In nice cases, when the set of Conley-Zehnder indices of all good periodic Reeb orbits on the boundary of the Liouville domain is lacunary, the positive $S1$-equivariant symplectic homology can be computed; it is generated by those orbits. We prove a "Viterbo functoriality" property: when one Liouville domain is embedded into an other one, there is a morphism (reversing arrows) between their positive $S1$-equivariant symplectic homologies and morphisms compose nicely. These properties allow us to give a proof of Ustilovsky's result on the number of non isomorphic contact structures on the spheres $S{4m+1}$. They also give a new proof of a Theorem by Ekeland and Lasry on the minimal number of periodic Reeb orbits on some hypersurfaces in $\mathbb{R}{2n}$. We extend this result to some hypersurfaces in some negative line bundles.

Summary

We haven't generated a summary for this paper yet.