2000 character limit reached
A note on the zeros of zeta and $L$-functions (1503.00955v1)
Published 3 Mar 2015 in math.NT
Abstract: Let $\pi S(t)$ denote the argument of the Riemann zeta-function at the point $s=\tfrac12+it$. Assuming the Riemann hypothesis, we give a new and simple proof of the sharpest known bound for $S(t)$. We discuss a generalization of this bound for a large class of $L$-functions including those which arise from cuspidal automorphic representations of GL($m$) over a number field. We also prove a number of related results including bounding the order of vanishing of an $L$-function at the central point and bounding the height of the lowest zero of an $L$-function.