Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Task-Oriented Learning of Word Embeddings for Semantic Relation Classification (1503.00095v3)

Published 28 Feb 2015 in cs.CL

Abstract: We present a novel learning method for word embeddings designed for relation classification. Our word embeddings are trained by predicting words between noun pairs using lexical relation-specific features on a large unlabeled corpus. This allows us to explicitly incorporate relation-specific information into the word embeddings. The learned word embeddings are then used to construct feature vectors for a relation classification model. On a well-established semantic relation classification task, our method significantly outperforms a baseline based on a previously introduced word embedding method, and compares favorably to previous state-of-the-art models that use syntactic information or manually constructed external resources.

Citations (53)

Summary

We haven't generated a summary for this paper yet.