Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying an Honest ${\rm EXP}^{\rm NP}$ Oracle Among Many (1502.07258v2)

Published 25 Feb 2015 in cs.CC

Abstract: We provide a general framework to remove short advice by formulating the following computational task for a function $f$: given two oracles at least one of which is honest (i.e. correctly computes $f$ on all inputs) as well as an input, the task is to compute $f$ on the input with the help of the oracles by a probabilistic polynomial-time machine, which we shall call a selector. We characterize the languages for which short advice can be removed by the notion of selector: a paddable language has a selector if and only if short advice of a probabilistic machine that accepts the language can be removed under any relativized world. Previously, instance checkers have served as a useful tool to remove short advice of probabilistic computation. We indicate that existence of instance checkers is a property stronger than that of removing short advice: although no instance checker for ${\rm EXP}{\rm NP}$-complete languages exists unless ${\rm EXP}{\rm NP} = {\rm NEXP}$, we prove that there exists a selector for any ${\rm EXP}{\rm NP}$-complete language, by building on the proof of ${\rm MIP} = {\rm NEXP}$ by Babai, Fortnow, and Lund (1991).

Citations (12)

Summary

We haven't generated a summary for this paper yet.