Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Measuring Online Social Bubbles (1502.07162v3)

Published 25 Feb 2015 in cs.SI and physics.soc-ph

Abstract: Social media have quickly become a prevalent channel to access information, spread ideas, and influence opinions. However, it has been suggested that social and algorithmic filtering may cause exposure to less diverse points of view, and even foster polarization and misinformation. Here we explore and validate this hypothesis quantitatively for the first time, at the collective and individual levels, by mining three massive datasets of web traffic, search logs, and Twitter posts. Our analysis shows that collectively, people access information from a significantly narrower spectrum of sources through social media and email, compared to search. The significance of this finding for individual exposure is revealed by investigating the relationship between the diversity of information sources experienced by users at the collective and individual level. There is a strong correlation between collective and individual diversity, supporting the notion that when we use social media we find ourselves inside "social bubbles". Our results could lead to a deeper understanding of how technology biases our exposure to new information.

Summary

We haven't generated a summary for this paper yet.