Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Maximizing Friend-Making Likelihood for Social Activity Organization (1502.06682v2)

Published 24 Feb 2015 in cs.SI

Abstract: The social presence theory in social psychology suggests that computer-mediated online interactions are inferior to face-to-face, in-person interactions. In this paper, we consider the scenarios of organizing in person friend-making social activities via online social networks (OSNs) and formulate a new research problem, namely, Hop-bounded Maximum Group Friending (HMGF), by modeling both existing friendships and the likelihood of new friend making. To find a set of attendees for socialization activities, HMGF is unique and challenging due to the interplay of the group size, the constraint on existing friendships and the objective function on the likelihood of friend making. We prove that HMGF is NP-Hard, and no approximation algorithm exists unless P = NP. We then propose an error-bounded approximation algorithm to efficiently obtain the solutions very close to the optimal solutions. We conduct a user study to validate our problem formulation and per- form extensive experiments on real datasets to demonstrate the efficiency and effectiveness of our proposed algorithm.

Citations (6)

Summary

We haven't generated a summary for this paper yet.