Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Projected Reflected Gradient Methods for Monotone Variational Inequalities (1502.04968v1)

Published 17 Feb 2015 in math.OC

Abstract: This paper is concerned with some new projection methods for solving variational inequality problems with monotone and Lipschitz-continuous mapping in Hilbert space. First, we propose the projected reflected gradient algorithm with a constant stepsize. It is similar to the projected gradient method, namely, the method requires only one projection onto the feasible set and only one value of the mapping per iteration. This distinguishes our method from most other projection-type methods for variational inequalities with monotone mapping. Also we prove that it has R-linear rate of convergence under the strong monotonicity assumption. The usual drawback of algorithms with constant stepsize is the requirement to know the Lipschitz constant of the mapping. To avoid this, we modify our first algorithm so that the algorithm needs at most two projections per iteration. In fact, our computational experience shows that such cases with two projections are very rare. This scheme, at least theoretically, seems to be very effective. All methods are shown to be globally convergent to a solution of the variational inequality. Preliminary results from numerical experiments are quite promising.

Summary

We haven't generated a summary for this paper yet.