Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A constructive presentation of rigged Hilbert spaces (1502.04891v1)

Published 17 Feb 2015 in math-ph, math.MP, and quant-ph

Abstract: We construct a rigged Hilbert space for the square integrable functions on the line L2(R) adding to the generators of the Weyl-Heisenberg algebra a new discrete operator, related to the degree of the Hermite polynomials. All together, continuous and discrete operators, constitute the generators of the projective algebra io(2. L2(R) and the vector space of the line R are shown to be isomorphic representations of such an algebra and, as both these representations are irreducible, all operators defined on the rigged Hilbert spaces L2(R) or R are shown to belong to the universal enveloping algebra of io(2). The procedure can be extended to orthogonal and pseudo-orthogonal spaces of arbitrary dimension by tensorialization. Circumventing all formal problems the paper proposes a kind of toy model, well defined from a mathematical point of view, of rigged Hilbert spaces where, in contrast with the Hilbert spaces, operators with different cardinality are allowed.

Summary

We haven't generated a summary for this paper yet.