Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 37 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 473 tok/s Pro
Kimi K2 240 tok/s Pro
2000 character limit reached

Symmetry improvement of 3PI effective actions for O(N) scalar field theory (1502.03640v3)

Published 12 Feb 2015 in hep-th and hep-ph

Abstract: [Abridged] n-Particle Irreducible Effective Actions ($n$PIEA) are a powerful tool for extracting non-perturbative and non-equilibrium physics from quantum field theories. Unfortunately, practical truncations of $n$PIEA can unphysically violate symmetries. Pilaftsis and Teresi (PT) addressed this by introducing a "symmetry improvement" scheme in the context of the 2PIEA for an O(2) scalar theory, ensuring that the Goldstone boson is massless in the broken symmetry phase [A. Pilaftsis and D. Teresi, Nuc.Phys. B 874, 2 (2013), pp. 594--619]. We extend this by introducing a symmetry improved 3PIEA for O(N) theories, for which the basic variables are the 1-, 2- and 3-point correlation functions. This requires the imposition of a Ward identity involving the 3-point function. The method leads to an infinity of physically distinct schemes, though an analogue of d'Alembert's principle is used to single out a unique scheme. The standard equivalence hierarchy of $n$PIEA no longer holds with symmetry improvement and we investigate the difference between the symmetry improved 3PIEA and 2PIEA. We present renormalized equations of motion and counter-terms for 2 and 3 loop truncations of the effective action, leaving their numerical solution to future work. We solve the Hartree-Fock approximation and find that our method achieves a middle ground between the unimproved 2PIEA and PT methods. The phase transition predicted by our method is weakly first order and the Goldstone theorem is satisfied. We also show that, in contrast to PT, the symmetry improved 3PIEA at 2 loops does not predict the correct Higgs decay rate, but does at 3 loops. These results suggest that symmetry improvement should not be applied to $n$PIEA truncated to $<n$ loops. We also show that symmetry improvement is compatible with the Coleman-Mermin-Wagner theorem, a check on the consistency of the formalism.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.