Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
GPT-4o
Gemini 2.5 Pro Pro
o3 Pro
GPT-4.1 Pro
DeepSeek R1 via Azure Pro
2000 character limit reached

Blow-up algebras, determinantal ideals, and Dedekind-Mertens-like formulas (1502.03484v2)

Published 11 Feb 2015 in math.AC, math.AG, and math.CO

Abstract: We investigate Rees algebras and special fiber rings obtained by blowing up specialized Ferrers ideals. This class of monomial ideals includes strongly stable monomial ideals generated in degree two and edge ideals of prominent classes of graphs. We identify the equations of these blow-up algebras. They generate determinantal ideals associated to subregions of a generic symmetric matrix, which may have holes. Exhibiting Gr\"obner bases for these ideals and using methods from Gorenstein liaison theory, we show that these determinantal rings are normal Cohen-Macaulay domains that are Koszul, that the initial ideals correspond to vertex decomposable simplicial complexes, and we determine their Hilbert functions and Castelnuovo-Mumford regularities. As a consequence, we find explicit minimal reductions for all Ferrers and many specialized Ferrers ideals, as well as their reduction numbers. These results can be viewed as extensions of the classical Dedekind-Mertens formula for the content of the product of two polynomials.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.