Simple conditions constraining the set of quantum correlations (1502.01876v2)
Abstract: The characterization of the set of quantum correlations in Bell scenarios is a problem of paramount importance for both the foundations of quantum mechanics and quantum information processing in the device-independent scenario. However, a clear-cut (physical or mathematical) characterization of this set remains elusive and many of its properties are still unknown. We provide here simple and general analytical conditions that are necessary for an arbitrary bipartite behaviour to be quantum. Although the conditions are not sufficient, we illustrate the strength and non-triviality of these conditions with a few examples. Moreover, we provide several applications of this result: we prove a quantitative separation of the quantum set from extremal nonlocal no-signaling behaviours in several general scenarios, we provide a relation to obtain Tsirelson bounds for arbitrary Bell inequalities and a construction of Bell expressions whose maximal quantum value is attained by a maximally entangled state of any given dimension.