Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CS reconstruction of the speech and musical signals (1502.01707v1)

Published 5 Feb 2015 in cs.SD and cs.MM

Abstract: The application of Compressive sensing approach to the speech and musical signals is considered in this paper. Compressive sensing (CS) is a new approach to the signal sampling that allows signal reconstruction from a small set of randomly acquired samples. This method is developed for the signals that exhibit the sparsity in a certain domain. Here we have observed two sparsity domains: discrete Fourier and discrete cosine transform domain. Furthermore, two different types of audio signals are analyzed in terms of sparsity and CS performance - musical and speech signals. Comparative analysis of the CS reconstruction using different number of signal samples is performed in the two domains of sparsity. It is shown that the CS can be successfully applied to both, musical and speech signals, but the speech signals are more demanding in terms of the number of observations. Also, our results show that discrete cosine transform domain allows better reconstruction using lower number of observations, compared to the Fourier transform domain, for both types of signals.

Citations (8)

Summary

We haven't generated a summary for this paper yet.