Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bar recursion in classical realisability : dependent choice and continuum hypothesis (1502.00112v4)

Published 31 Jan 2015 in cs.LO and math.LO

Abstract: This paper is about the bar recursion operator in the context of classical realizability. After the pioneering work of Berardi, Bezem & Coquand [1], T. Streicher has shown [10], by means of their bar recursion operator, that the realizability models of ZF, obtained from usual models of $\lambda$-calculus (Scott domains, coherent spaces, . . .), satisfy the axiom of dependent choice. We give a proof of this result, using the tools of classical realizability. Moreover, we show that these realizability models satisfy the well ordering of $\mathbb{R}$ and the continuum hypothesis These formulas are therefore realized by closed $\lambda_c$-terms. This allows to obtain programs from proofs of arithmetical formulas using all these axioms.

Citations (11)

Summary

We haven't generated a summary for this paper yet.