Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Compute-and-Forward with Lattice Codes Over Algebraic Integers (1501.07740v2)

Published 30 Jan 2015 in cs.IT and math.IT

Abstract: We consider the compute-and-forward paradigm with limited feedback. Without feedback, compute-and-forward is typically realized with lattice codes over the ring of integers, the ring of Gaussian integers, or the ring of Eisenstein integers, which are all principal ideal domains (PID). A novel scheme called adaptive compute-and-forward is proposed to exploit the limited feedback about the channel state by working with the best ring of imaginary quadratic integers. This is enabled by generalizing the famous Construction A from PID to other rings of imaginary quadratic integers which may not form PID and by showing such the construction can produce good lattices for coding in the sense of Poltyrev and for MSE quantization. Simulation results show that by adaptively choosing the best ring among the considered ones according to the limited feedback, the proposed adaptive compute-and-forward provides a better performance than that provided by the conventional compute-and-forward scheme which works over Gaussian or Eisenstein integers solely.

Citations (19)

Summary

We haven't generated a summary for this paper yet.