Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential Probability Assignment with Binary Alphabets and Large Classes of Experts (1501.07340v1)

Published 29 Jan 2015 in cs.IT, cs.LG, math.IT, and stat.ML

Abstract: We analyze the problem of sequential probability assignment for binary outcomes with side information and logarithmic loss, where regret---or, redundancy---is measured with respect to a (possibly infinite) class of experts. We provide upper and lower bounds for minimax regret in terms of sequential complexities of the class. These complexities were recently shown to give matching (up to logarithmic factors) upper and lower bounds for sequential prediction with general convex Lipschitz loss functions (Rakhlin and Sridharan, 2015). To deal with unbounded gradients of the logarithmic loss, we present a new analysis that employs a sequential chaining technique with a Bernstein-type bound. The introduced complexities are intrinsic to the problem of sequential probability assignment, as illustrated by our lower bound. We also consider an example of a large class of experts parametrized by vectors in a high-dimensional Euclidean ball (or a Hilbert ball). The typical discretization approach fails, while our techniques give a non-trivial bound. For this problem we also present an algorithm based on regularization with a self-concordant barrier. This algorithm is of an independent interest, as it requires a bound on the function values rather than gradients.

Citations (30)

Summary

We haven't generated a summary for this paper yet.