Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Relaxed singular vectors, Jack symmetric functions and fractional level $\widehat{\mathfrak{sl}}(2)$ models (1501.07318v2)

Published 29 Jan 2015 in hep-th, math-ph, math.MP, math.QA, and math.RT

Abstract: The fractional level models are (logarithmic) conformal field theories associated with affine Kac-Moody (super)algebras at certain levels $k \in \mathbb{Q}$. They are particularly noteworthy because of several longstanding difficulties that have only recently been resolved. Here, Wakimoto's free field realisation is combined with the theory of Jack symmetric functions to analyse the fractional level $\widehat{\mathfrak{sl}}(2)$ models. The first main results are explicit formulae for the singular vectors of minimal grade in relaxed Wakimoto modules. These are closely related to the minimal grade singular vectors in relaxed (parabolic) Verma modules. Further results include an explicit presentation of Zhu's algebra and an elegant new proof of the classification of simple relaxed highest weight modules over the corresponding vertex operator algebra. These results suggest that generalisations to higher rank fractional level models are now within reach.

Summary

We haven't generated a summary for this paper yet.