Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An approach to multi-agent planning with incomplete information (1501.07256v1)

Published 28 Jan 2015 in cs.AI

Abstract: Multi-agent planning (MAP) approaches have been typically conceived for independent or loosely-coupled problems to enhance the benefits of distributed planning between autonomous agents as solving this type of problems require less coordination between the agents' sub-plans. However, when it comes to tightly-coupled agents' tasks, MAP has been relegated in favour of centralized approaches and little work has been done in this direction. In this paper, we present a general-purpose MAP capable to efficiently handle planning problems with any level of coupling between agents. We propose a cooperative refinement planning approach, built upon the partial-order planning paradigm, that allows agents to work with incomplete information and to have incomplete views of the world, i.e. being ignorant of other agents' information, as well as maintaining their own private information. We show various experiments to compare the performance of our system with a distributed CSP-based MAP approach over a suite of problems.

Citations (49)

Summary

We haven't generated a summary for this paper yet.